Study of dynamics of charge trapping in a-Si:H/SiN TFTs
نویسندگان
چکیده
In this paper we present the study of the failure mechanism responsible for long-term degradation that ultimately leads to instability in aSi:H/SiN TFTs. The experimental data points we obtain by monitoring in-situ the drain current during gate bias stress (forward and reverse bias) and relaxation could not be fitted with the models existent in the literature. A new model that we have christened "Progressive Degradation Model" (PDM) emerged. The model makes use of Heimann-Warfield theory of trapping/detrapping front. PDM achieves a consistent fit to any bias condition showing that the degradation can be modelled quantitatively yielding the number of traps involved, their position and the charge dispersion coefficient. According to PDM the degradation of electrical response is a combined effect of a fast interface traps generation and a slow charge trapping at the created defect sites in a-SiN:H transitional region.
منابع مشابه
Threshold Voltage Instability and Relaxation in Hydrogenated Amorphous Silicon Thin Film Transistors
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. Abstract This thesis presents a study of the bias-induced threshold voltage metastability phenomenon of the hydrogenated amorphous silicon (a-Si:H) thin f...
متن کاملStudy by simulation the influence of temperature on the formation of space charge in the dielectric multilayer Under DC Electric stress
Multidielectric polyethylene is a material that is generally employed as insulation for the HVDC isolations. In this paper, the influence of temperature on space charge dynamics has been studied, low-density polyethylene (LDPE) and Fluorinated Ethylene Propylene (FEP) sandwiched between two electrodes were subjected to voltage application of 5kV (14.3 kV/mm) for extended duration of time ...
متن کاملPolymorphous Silicon: A Promising Material for Thin-Film Transistors for Low-Cost and High-Performance Active-Matrix OLED Displays
Hydrogenated polymorphous Silicon allows to fabricate TFTs with very interesting characteristics including better threshold voltage stability than a-Si TFTs, lower leakage current than μc-Si:H TFTs and excellent uniformity. Investigation of threshold voltage shift mechanisms of pm-Si:H TFTs has shown a specific semiconductor material degradation with different activation energies compared to a-...
متن کاملDynamic Response of a-InGaZnO Thin-Film Transistors for Ultra-High Definition Active-Matrix Liquid Crystal Displays
The dynamic response of amorphous In-Ga-ZnO (a-IGZO) thin-film transistors (TFTs) are compared with hydrogenated amorphous silicon (a-Si:H) TFTs. We study the storage capacitor (Cst) charging characteristics by applying gate and data voltage waveforms for ultra-high definition (UHD) active-matrix flat-panel displays (AMFPDs). Experimental data show that the charging characteristics of a-Si:H TF...
متن کاملSelf-alignment techniques for fabricating a-Si:H TFTs at 300C on clear plastic
We previously demonstrated highly stable backchannel cut and back-channel passivated amorphous silicon thin-film transistors (a-Si:H TFTs) made at 300C on 2.9-inch x 2.9-inch clear plastic substrates [1]. Mechanical stress in the TFT stack causes the substrate to expand or contract, which easily results in misalignment between consecutive device layers [2,3]. Therefore we developed three selfal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001